Global warming

From Encyclopedia Westarctica
(Redirected from Climate change)
Jump to: navigation, search
Starving polar bear on sparse sea ice in the Arctic

Global warming, also referred to as climate change, is the observed century-scale rise in the average temperature of the Earth's climate system, and its related effects. Multiple lines of scientific evidence show that the climate system is warming. Many of the observed changes since the 1950s are unprecedented in the instrumental temperature record, which extends back to the mid-19th century, and in paleoclimate proxy records covering thousands of years.

In 2013, the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report concluded that "It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century." The largest human influence has been the emission of greenhouse gases such as carbon dioxide, methane and nitrous oxide. These findings have been recognized by the national science academies of the major industrialized nations and are not disputed by any scientific body of national or international standing.

Effects significant to humans include the threat to food security from decreasing crop yields and the abandonment of populated areas due to rising sea levels. Because the climate system has a large "inertia" and greenhouse gases will remain in the atmosphere for a long time, many of these effects will persist for not only decades or centuries, but for tens of thousands of years to come.

Possible solutions to global warming include mitigation by emissions reduction, adaptation to its effects, building systems resilient to its effects, and possible future climate engineering. Most countries are parties to the United Nations Framework Convention on Climate Change (UNFCCC), whose ultimate objective is to prevent dangerous anthropogenic climate change. Parties to the UNFCCC have agreed that deep cuts in emissions are required and that global warming should be limited to well below 2.0 °C (3.6 °F) compared to pre-industrial levels,[b] with efforts made to limit warming to 1.5 °C (2.7 °F).

Observed temperature changes

Calculations of global warming prepared in or before 2001 from a range of climate models under the SRES A2 emissions scenario, which assumes no action is taken to reduce emissions and regionally divided economic development.

In the period from 1880 to 2012, the global average (land and ocean) surface temperature has increased by 0.85 [0.65 to 1.06] °C, multiple independently produced datasets confirm. In the period from 1906 to 2005, Earth's average surface temperature rose by 0.74±0.18 °C. The rate of warming almost doubled in the last half of that period (0.13±0.03 °C per decade, against 0.07±0.02 °C per decade). Although the popular press often reports the increase of the average near-surface atmospheric temperature as the measure of global warming, most of the additional energy stored in the climate system since 1970 has accumulated in the oceans. The rest has melted ice and warmed the continents and the atmosphere.

Since 1979, the average temperature of the lower troposphere has increased between 0.12 and 0.135 °C (0.216 and 0.243 °F) per decade, satellite temperature measurements confirm. Climate proxies show the temperature to have been relatively stable over the one or two thousand years before 1850, with regionally varying fluctuations such as the Medieval Warm Period and the Little Ice Age.

The warming evident in the instrumental temperature record is consistent with a wide range of observations, as documented by many independent scientific groups. Examples include sea level rise,[33] widespread melting of snow and land ice, increased heat content of the oceans, increased humidity, and the earlier timing of spring events, e.g., the flowering of plants. The probability that these changes could have occurred by chance is virtually zero.

Regional trends and short-term fluctuations

Global CO2 gas emissions in the year 2015 by country

Global warming refers to global averages. Because it is not a uniform phenomenon, effects can vary by region. Since 1979, global average land temperatures have increased about twice as fast as global average ocean temperatures (0.25 °C per decade against 0.13 °C per decade). Ocean temperatures increase more slowly than land temperatures because of the larger effective heat capacity of the oceans and because oceans lose more heat by evaporation. Since the beginning of industrialisation in the eighteenth century, the temperature difference between the hemispheres has increased due to feedbacks from melting of sea ice and snow in the North, and because there is more land in the northern hemisphere. In the past one hundred years, average arctic temperatures have been increasing at almost twice the rate of the rest of the world. At least one region – the southeastern part of the United States – has experienced cooler than normal temperatures.

Although more greenhouse gases are emitted in the Northern than in the Southern Hemisphere, this fact does not contribute to the difference in warming because the major greenhouse gases persist long enough to diffuse within as well as between the hemispheres.

There are different ways in which a climate can be forced to change, but because the climate system has large thermal inertia it can take centuries – or even longer – for the climate to fully adjust. One climate commitment study concluded that if greenhouse gases were stabilized at year 2000 levels, surface temperatures would still increase by about one-half degree Celsius, and another found that if they were stabilized at 2005 levels, surface warming could exceed a whole degree Celsius. Some of this surface warming will be driven by past natural forces which are still seeking equilibrium in the climate system. One study using a highly simplified climate model indicates these past natural forces may account for as much as 64% of the committed 2050 surface warming and their influence will fade with time compared to the human contribution.

Global temperature is subject to short-term fluctuations that overlay long-term trends and can temporarily mask them. The relative stability in surface temperature from 2002 to 2009, which has since been dubbed the global warming hiatus by the media and some scientists, is an example of such an episode. 2015 updates to account for differing methods of measuring ocean surface temperature measurements show a positive trend over the recent decade.

Warmest years vs. overall trend

Land-ocean temperature index, 1880 to present, with base period 1951-1980.

Sixteen of the seventeen warmest years on record have occurred since 2000. While record-breaking years attract considerable public interest, individual years are less significant than the overall trend. Some climatologists have criticized the attention that the popular press gives to "warmest year" statistics. In particular, ocean oscillations such as the El Niño Southern Oscillation (ENSO) can cause temperatures of a given year to be abnormally warm or cold for reasons unrelated to the overall trend of climate change. Gavin Schmidt stated: "the long-term trends or the expected sequence of records are far more important than whether any single year is a record or not.

Greenhouse gasses

The greenhouse effect is the process by which absorption and emission of infrared radiation by gases in a planet's atmosphere warm its lower atmosphere and surface. It was proposed by Joseph Fourier in 1824, discovered in 1860 by John Tyndall, was first investigated quantitatively by Svante Arrhenius in 1896, and its scientific description was developed in the 1930s through 1960s by Guy Stewart Callendar.

On Earth, an atmosphere containing naturally occurring amounts of greenhouse gases causes air temperature near the surface to be warmer by about 33 °C (59 °F) than it would be in their absence. Without the Earth's atmosphere, the Earth's average temperature would be well below the freezing temperature of water. The major greenhouse gases are water vapor, which causes about 36–70% of the greenhouse effect; carbon dioxide (CO2), which causes 9–26%; methane (CH4), which causes 4–9%; and ozone (O3), which causes 3–7%. Clouds also affect the radiation balance through cloud forcings similar to greenhouse gases.

Human activity since the Industrial Revolution has increased the amount of greenhouse gases in the atmosphere, leading to increased radiative forcing from CO2, methane, tropospheric ozone, CFCs and nitrous oxide. According to work published in 2007, the concentrations of CO2 and methane had increased by 36% and 148% respectively since 1750. These levels are much higher than at any time during the last 800,000 years, the period for which reliable data has been extracted from ice cores. Less direct geological evidence indicates that CO2 values higher than this were last seen about 20 million years ago.

Fossil fuel burning has produced about three-quarters of the increase in CO2 from human activity over the past 20 years. The rest of this increase is caused mostly by changes in land-use, particularly deforestation. Another significant non-fuel source of anthropogenic CO2 emissions is the calcination of limestone for clinker production, a chemical process which releases CO2. Estimates of global CO2 emissions in 2011 from fossil fuel combustion, including cement production and gas flaring, was 34.8 billion tonnes (9.5 ± 0.5 PgC), an increase of 54% above emissions in 1990. Coal burning was responsible for 43% of the total emissions, oil 34%, gas 18%, cement 4.9% and gas flaring 0.7%.

In May 2013, it was reported that readings for CO2 taken at the world's primary benchmark site in Mauna Loa surpassed 400 ppm. According to professor Brian Hoskins, this is likely the first time CO2 levels have been this high for about 4.5 million years. Monthly global CO2 concentrations exceeded 400 ppm in March 2015, probably for the first time in several million years. On 12 November 2015, NASA scientists reported that human-made carbon dioxide continues to increase above levels not seen in hundreds of thousands of years; currently, about half of the carbon dioxide released from the burning of fossil fuels is not absorbed by vegetation and the oceans and remains in the atmosphere.

Aerosols and soot

Global dimming, a gradual reduction in the amount of global direct irradiance at the Earth's surface, was observed from 1961 until at least 1990. Solid and liquid particles known as aerosols, produced by volcanoes and human-made pollutants, are thought to be the main cause of this dimming. They exert a cooling effect by increasing the reflection of incoming sunlight. The effects of the products of fossil fuel combustion – CO2 and aerosols – have partially offset one another in recent decades, so that net warming has been due to the increase in non-CO2 greenhouse gases such as methane.[ Radiative forcing due to aerosols is temporally limited due to the processes that remove aerosols from the atmosphere. Removal by clouds and precipitation gives tropospheric aerosols an atmospheric lifetime of only about a week, while stratospheric aerosols can remain for a few years. Carbon dioxide has a lifetime of a century or more, and as such, changes in aerosols will only delay climate changes due to carbon dioxide. Black carbon is second only to carbon dioxide for its contribution to global warming (contribution being estimated at 17 to 20%, whereas carbon dioxide contributes 40 to 45% to global warming).

In addition to their direct effect by scattering and absorbing solar radiation, aerosols have indirect effects on the Earth's radiation budget. Sulfate aerosols act as cloud condensation nuclei and thus lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets, a phenomenon known as the Twomey effect. This effect also causes droplets to be of more uniform size, which reduces growth of raindrops and makes the cloud more reflective to incoming sunlight, known as the Albrecht effect. Indirect effects are most noticeable in marine stratiform clouds, and have very little radiative effect on convective clouds. Indirect effects of aerosols represent the largest uncertainty in radiative forcing.

Soot may either cool or warm Earth's climate system, depending on whether it is airborne or deposited. Atmospheric soot directly absorbs solar radiation, which heats the atmosphere and cools the surface. In isolated areas with high soot production, such as rural India, as much as 50% of surface warming due to greenhouse gases may be masked by atmospheric brown clouds. When deposited, especially on glaciers or on ice in arctic regions, the lower surface albedo can also directly heat the surface. The influences of atmospheric particles, including black carbon, are most pronounced in the tropics and sub-tropics, particularly in Asia, while the effects of greenhouse gases are dominant in the extratropics and southern hemisphere.

Effects

Environmental

Anthropogenic forcing has likely contributed to some of the observed changes, including sea level rise, changes in climate extremes (such as the number of warm and cold days), declines in Arctic sea ice extent, glacier retreat, and greening of the Sahara.

The average sea ice decline recorded from 1953 to 2006 is -7.8%±0.6%/decade, this is more than three times the size of the average forecast trend of -2.5%±0.2%/decade. Even the "worst case scenario" models didn’t forecast the extent of the sea ice decline adequately. The quickest rate of sea ice decline from any of the models associated with the Intergovernmental Panel on Climate Change Fourth Assessment Report was -5.4%±0.4%/decade.[150] Global warming has led to decades of shrinking and thinning in a warm climate that has put the Arctic sea ice in a precarious position, it is now vulnerable to atmospheric anomalies. Projections of declines in Arctic sea ice vary. Recent projections suggest that Arctic summers could be ice-free (defined as ice extent less than 1 million square km) as early as 2025–2030.

"Detection" is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. Detection does not imply attribution of the detected change to a particular cause. "Attribution" of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.[155] Detection and attribution may also be applied to observed changes in physical, ecological and social systems.

Extreme weather

Data analysis of extreme events from 1960 until 2010 suggests that droughts and heat waves appear simultaneously with increased frequency. Extremely wet or dry events within the monsoon period have increased since 1980. Projections suggest a probable increase in the frequency and severity of some extreme weather events, such as heat waves.

Sea level rise

Sparse records indicate that glaciers have been retreating since the early 1800s. In the 1950s measurements began that allow the monitoring of glacial mass balance, reported to the World Glacier Monitoring Service (WGMS) and the National Snow and Ice Data Center (NSIDC). The acceleration of the rate of retreat since 1995 of key outlet glaciers of the Greenland and West Antarctic Ice Sheet may foreshadow a rise in sea level, which would seriously affect coastal regions.

The sea level rise since 1993 has been estimated to have been on average 2.6 mm and 2.9 mm per year ± 0.4 mm. Additionally, sea level rise has accelerated from 1995 to 2015. Over the 21st century, the IPCC projects for a high emissions scenario, that global mean sea level could rise by 52–98 cm. The IPCC's projections are conservative, and may underestimate future sea level rise. Other estimates suggest that for the same period, global mean sea level could rise by 0.2 to 2.0 m (0.7–6.6 ft), relative to mean sea level in 1992. Widespread coastal flooding would be expected if several degrees of warming is sustained for millennia. For example, sustained global warming of more than 2 °C (relative to pre-industrial levels) could lead to eventual sea level rise of around 1 to 4 m due to thermal expansion of sea water and the melting of glaciers and small ice caps.

Social systems

The effects of climate change on human systems, mostly due to warming or shifts in precipitation patterns, or both, have been detected worldwide. The future social impacts of climate change will be uneven across the world. Many risks are expected to increase with higher magnitudes of global warming. All regions are at risk of experiencing negative impacts. Low-latitude, less developed areas face the greatest risk. A study from 2015 concluded that economic growth (gross domestic product) of poorer countries is much more impaired with projected future climate warming, than previously thought. In small islands and mega deltas, inundation as a result of sea level rise is expected to threaten vital infrastructure and human settlements. This could lead to issues of homelessness in countries with low-lying areas such as Bangladesh, as well as statelessness for populations in countries such as the Maldives and Tuvalu.

Terminology

In the 1950s, research suggested increasing temperatures, and a 1952 newspaper reported "climate change". This phrase next appeared in a November 1957 report in The Hammond Times which described Roger Revelle's research into the effects of increasing human-caused CO2 emissions on the greenhouse effect, "a large scale global warming, with radical climate changes may result". Both phrases were only used occasionally until 1975, when Wallace Smith Broecker published a scientific paper on the topic, "Climatic Change: Are We on the Brink of a Pronounced Global Warming?" The phrase began to come into common use, and in 1976 Mikhail Budyko's statement that "a global warming up has started" was widely reported. Other studies, such as a 1971 MIT report, referred to the human impact as "inadvertent climate modification", but an influential 1979 National Academy of Sciences study headed by Jule Charney followed Broecker in using global warming for rising surface temperatures, while describing the wider effects of increased CO2 as climate change.

In 1986 and November 1987, NASA climate scientist James Hansen gave testimony to Congress on global warming. There were increasing heatwaves and drought problems in the summer of 1988, and when Hansen testified in the Senate on 23 June he sparked worldwide interest. He said, "global warming has reached a level such that we can ascribe with a high degree of confidence a cause and effect relationship between the greenhouse effect and the observed warming." Public attention increased over the summer, and global warming became the dominant popular term, commonly used both by the press and in public discourse.

In a 2008 NASA article on usage, Erik M. Conway defined global warming as "the increase in Earth’s average surface temperature due to rising levels of greenhouse gases", while climate change was "a long-term change in the Earth’s climate, or of a region on Earth." As effects such as changing patterns of rainfall and rising sea levels would probably have more impact than temperatures alone, he considered global climate change a more scientifically accurate term, and like the Intergovernmental Panel on Climate Change, the NASA website would emphasize this wider context.