Difference between revisions of "Antarctic krill"

Jump to navigation Jump to search
201 bytes added ,  07:30, 1 December 2019
no edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:


It grows to a length of 6 cm, weighs up to 2 grams, and can live for up to six years. It is a key species in the Antarctic ecosystem and is, in terms of biomass, probably the most abundant animal species on the planet (approximately 500 million tonnes, corresponding to 300 to 400 trillion individuals).
It grows to a length of 6 cm, weighs up to 2 grams, and can live for up to six years. It is a key species in the Antarctic ecosystem and is, in terms of biomass, probably the most abundant animal species on the planet (approximately 500 million tonnes, corresponding to 300 to 400 trillion individuals).
In 2019, the Antarctic krill was featured on a [[Stamps of Westarctica|stamp of Westarctica]] to celebrate its role as a vital part of the Antarctic ecosystem.


==Life cycle==
==Life cycle==
Line 42: Line 44:
Crabeater seals have even developed special teeth as an adaptation to catch this abundant food source: its unusual multilobed teeth enable this species to sieve krill from the water. Its dentition looks like a perfect strainer, but how it operates in detail is still unknown. Crabeaters are the most abundant seal in the world; 98% of their diet is made up of '' E. superba''. These seals consume over 63 million tonnes of krill each year.  [[Leopard seal]]s have developed similar teeth and consume approximately 45% krill in their diets. All seals combined consume 63–130 million tonnes, all whales 34–43 million tonnes, birds 15–20 million tonnes, squid 30–100 million tonnes, and fish 10–20 million tonnes, adding up to 152–313 million tonnes of krill consumption each year.
Crabeater seals have even developed special teeth as an adaptation to catch this abundant food source: its unusual multilobed teeth enable this species to sieve krill from the water. Its dentition looks like a perfect strainer, but how it operates in detail is still unknown. Crabeaters are the most abundant seal in the world; 98% of their diet is made up of '' E. superba''. These seals consume over 63 million tonnes of krill each year.  [[Leopard seal]]s have developed similar teeth and consume approximately 45% krill in their diets. All seals combined consume 63–130 million tonnes, all whales 34–43 million tonnes, birds 15–20 million tonnes, squid 30–100 million tonnes, and fish 10–20 million tonnes, adding up to 152–313 million tonnes of krill consumption each year.


The size step between krill and its prey is unusually large: generally it takes three or four steps from the small phytoplankton cells to a krill-sized organism (via small copepods, large copepods, mysids to 5 cm fish. ''E. superba'' lives only in the Southern Ocean. In the North Atlantic, ''Meganyctiphanes norvegica'' and in the Pacific, ''Euphausia pacifica'' are the dominant species.
The size step between krill and its prey is unusually large: generally it takes three or four steps from the small phytoplankton cells to a krill-sized organism (via small copepods, large copepods, mysids to 5 cm fish. ''E. superba'' lives only in the [[Southern Ocean]]. In the North Atlantic, ''Meganyctiphanes norvegica'' and in the Pacific, ''Euphausia pacifica'' are the dominant species.


===Biomass and production===
===Biomass and production===
Line 61: Line 63:


==Future visions and ocean engineering==
==Future visions and ocean engineering==
Despite the lack of knowledge available about the whole Antarctic ecosystem, large scale experiments involving krill are already being performed to increase carbon sequestration: in vast areas of the Southern Ocean there are plenty of nutrients, but still, the phytoplankton does not grow much. These areas are termed HNLC (high nutrient, low chlorophyll). The phenomenon is called the "Antarctic Paradox", and occurs because iron is missing. Relatively small injections of iron from research vessels trigger very large blooms, covering many miles. The hope is that such large scale exercises will draw down carbon dioxide as compensation for the burning of fossil fuels.
Despite the lack of knowledge available about the whole Antarctic ecosystem, large scale experiments involving krill are already being performed to increase carbon sequestration: in vast areas of the [[Southern Ocean]] there are plenty of nutrients, but still, the phytoplankton does not grow much. These areas are termed HNLC (high nutrient, low chlorophyll). The phenomenon is called the "Antarctic Paradox", and occurs because iron is missing. Relatively small injections of iron from research vessels trigger very large blooms, covering many miles. The hope is that such large scale exercises will draw down carbon dioxide as compensation for the burning of fossil fuels.


[[Category:Animals of Westarctica]]
[[Category:Animals of Westarctica]]
[[Category: Featured Articles]]

Navigation menu