Difference between revisions of "Antarctica"

4 bytes added ,  22:19, 11 May 2018
Line 123: Line 123:


==Fungi==
==Fungi==
About 1,150 species of fungi have been recorded from Antarctica, of which about 750 are non-lichen-forming and 400 are [[lichen]]-forming. Some of these species are cryptoendoliths as a result of evolution under extreme conditions, and have significantly contributed to shaping the impressive rock formations of the McMurdo Dry Valleys and surrounding mountain ridges. The apparently simple morphology, scarcely differentiated structures, metabolic systems and enzymes still active at very low temperatures, and reduced life cycles shown by such fungi make them particularly suited to harsh environments such as the McMurdo Dry Valleys. In particular, their thick-walled and strongly melanised cells make them resistant to UV light. Those features can also be observed in algae and cyanobacteria, suggesting that these are adaptations to the conditions prevailing in Antarctica. This has led to speculation that, if life ever occurred on Mars, it might have looked similar to Antarctic fungi such as Cryomyces antarcticus, and Cryomyces minteri. Some of these fungi are also apparently endemic to Antarctica.  
About 1,150 species of fungi have been recorded from Antarctica, of which about 750 are non-[[lichen]]-forming and 400 are [[lichen]]-forming. Some of these species are cryptoendoliths as a result of evolution under extreme conditions, and have significantly contributed to shaping the impressive rock formations of the McMurdo Dry Valleys and surrounding mountain ridges. The apparently simple morphology, scarcely differentiated structures, metabolic systems and enzymes still active at very low temperatures, and reduced life cycles shown by such fungi make them particularly suited to harsh environments such as the McMurdo Dry Valleys. In particular, their thick-walled and strongly melanised cells make them resistant to UV light. Those features can also be observed in algae and cyanobacteria, suggesting that these are adaptations to the conditions prevailing in Antarctica. This has led to speculation that, if life ever occurred on Mars, it might have looked similar to Antarctic fungi such as Cryomyces antarcticus, and Cryomyces minteri. Some of these fungi are also apparently endemic to Antarctica.  


Endemic Antarctic fungi also include certain dung-inhabiting species which have had to evolve in response to the double challenge of extreme cold while growing on dung, and the need to survive passage through the gut of warm-blooded animals.
Endemic Antarctic fungi also include certain dung-inhabiting species which have had to evolve in response to the double challenge of extreme cold while growing on dung, and the need to survive passage through the gut of warm-blooded animals.