Difference between revisions of "Dotson Ice Shelf"

77 bytes added ,  16:09, 17 May 2018
no edit summary
(adding map)
Line 1: Line 1:
[[File:ice features.jpg|right|600px]]
[[File:ice features.jpg|right|550px]]
The '''Dotson Ice Shelf''' is an [[ice-shelf|ice shelf]] about 30 miles (50 km) wide between the [[Martin Peninsula]] and the [[Bear Peninsula]] on the coast of [[Westarctica]].
The '''Dotson Ice Shelf''' is an [[ice-shelf|ice shelf]] about 30 miles (50 km) wide between the [[Martin Peninsula]] and the [[Bear Peninsula]] on the coast of [[Westarctica]].


Line 11: Line 11:


<blockquote>
<blockquote>
We have found subtle changes in both surface elevation data from CryoSat and ice velocity from Sentinel-1 which shows that melting is not uniform, but has centred on a 5 km-wide channel that runs 60 km along the underside of the shelf. Unlike most recent observations, we think that the channel under Dotson is eroded by warm water, about 1°C, as it circulates under the shelf, stirred clockwise and upward by Earth’s rotation. Revisiting older satellite data, we think that this melt pattern has been taking place for at least the entire 25 years that Earth observation satellites have been recording changes in Antarctica. Over time, the melt has calved in a broad channel-like feature up to 200 m deep and 15 km across that runs the entire length of the underside of Dotson ice shelf. We can see that this canyon is deepening by about 7 m a year and that the ice above is heavily crevassed. Melt from Dotson ice shelf results in 40 billion tonnes of freshwater being poured into the Southern Ocean every year, and this canyon alone is responsible for the release of four billion tonnes – a significant proportion. The strength of an ice shelf depends on how thick it is. Since shelves are already suffering from thinning, these deepening canyons mean that fractures are likely to develop and the grounded ice upstream will flow faster than would be the case otherwise.
We have found subtle changes in both surface elevation data from CryoSat and ice velocity from Sentinel-1 which shows that melting is not uniform, but has centered on a 5 km-wide channel that runs 60 km along the underside of the shelf. Unlike most recent observations, we think that the channel under Dotson is eroded by warm water, about 1°C, as it circulates under the shelf, stirred clockwise and upward by Earth’s rotation. Revisiting older satellite data, we think that this melt pattern has been taking place for at least the entire 25 years that Earth observation satellites have been recording changes in Antarctica. Over time, the melt has calved in a broad channel-like feature up to 200 m deep and 15 km across that runs the entire length of the underside of Dotson ice shelf.<br>
 
We can see that this canyon is deepening by about 7 m a year and that the ice above is heavily crevassed. Melt from Dotson ice shelf results in 40 billion tonnes of freshwater being poured into the Southern Ocean every year, and this canyon alone is responsible for the release of four billion tonnes – a significant proportion. The strength of an ice shelf depends on how thick it is. Since shelves are already suffering from thinning, these deepening canyons mean that fractures are likely to develop and the grounded ice upstream will flow faster than would be the case otherwise.
</blockquote>
</blockquote>
[[File:Dotson edge.jpg|thumb|400px|left|Edge of the Dotson Ice Shelf]]


==External links==
==External links==